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Single bunch stability to monopole excitation
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We study single bunch stability with respect to monopole longitudinal oscillations in ele
storage rings. Our analysis is different from the standard approach based on the linearized
equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schrödinger-like eq
which is subsequently analyzed by perturbation theory. We show that the Haissinski so
[Nuovo Cimento Soc. Ital. Fis.18B, 72 (1973)] may become unstable with respect to monop
oscillations and derive a stability criterion in terms of the ring impedance. We then discus
criterion and apply it to a broadband resonator impedance model. [S1098-4402(99)00034-8]

PACS numbers: 29.20.Dh, 29.27.–a
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I. INTRODUCTION

Single bunch longitudinal instability is one of the facto
limiting the performance of electron storage rings. Th
retical analysis of this instability is usually based on
Fokker-Planck equation for the particle distribution fun
tion. This equation includes the effects of both dynam
(Hamiltonian) and stochastic forces. The Hamiltonian p
describes the synchrotron motion while radiation terms
count for the (much slower) effects of the synchrotr
radiation and define the rms beam size at low intens
The steady state solution of the Fokker-Planck equa
was first obtained in 1973 by Haissinski [1] and sin
then it was confirmed in numerous experiments held
low the instability threshold. Unfortunately, apart from
few limiting cases, finding other possible solutions of t
Fokker-Planck equation that could account for the ins
bility turned out to be quite difficult. This is why muc
of the analysis to explain the instability was done util
ing the linearized Vlasov equation technique, where
Fokker-Planck equation was linearized with respect to
Haissinski solution. In this approach the Haissinski so
tion is also used to introduce the action-angle variables
make the Haissinski Hamiltonian independent of ang
which results in great simplification of further analysis.

The linearized Vlasov equation technique natura
leads to the concept of azimuthal phase space modes
are basically the components of the perturbation to
Haissinski solution with certain azimuthal symmetry. T
first three of such modes are sketched in Fig. 1. N
that in this figure and throughout the rest of the pa
we assume the simplest phase space topology, w
action-angle variables can be defined uniformly across
whole plane. In other words, we neglect the possibility
several potential well minima.

As seen from Fig. 1, the monopole mode is qu
special because, in contrast to other modes, its phy
space projection does not change significantly on the t
scale of a synchrotron period. This argues that radia
rather than Hamiltonian forces define the dynamics of
1098-4402y99y2(4)y044402(7)$15.00
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mode. Also, by definition of action-angle variables, t
unperturbed Haissinski solution has monopole azimu
structure. These two features of the monopole m
explain why it is omitted from the standard lineariz
Vlasov analysis. Indeed, in that approach the sole ef
of radiation terms in the Fokker-Planck equation is t
they define the Haissinski solution which subseque
cancels them out, so that only Hamiltonian terms rem
in the linearized Vlasov equation. The possibility th
a perturbation is monopole, but with radial structu
different from the Haissinski solution, is neglected.

In this paper we are exploring the possibility that
instability can be associated with the monopole mo
Rather than extending the linearized Vlasov technique
find it more convenient to transform the Fokker-Plan
equation to a Schrödinger-like equation and then ana
the latter using the Haissinski solution as a basis.
advantages of this approach are that it is tractable
it conveniently allows us to use some well-known fa
about Schrödinger equation solutions.

The only essential approximation that we make in t
paper is that we assume that the monopole mode ca
considered separately from other azimuthal modes. T
is by no means general. On the contrary, it is kno
that, for example, some collective instabilities result fro
azimuthal mode coupling; hence, concentrating on
mode in that case would be inappropriate. Howev
at lower intensity, when incoherent frequency shifts
small compared to the synchrotron frequency, the cr
talk between different azimuthal modes is negligib
Whether a monopole mode or any other single azimu
mode can become unstable at this low intensity is,
our opinion, a quantitative question that depends on
exact measure of the storage ring impedance. In f
there are computer simulations for model impedances
showing that radial modes that belong to one azimu
mode become unstable before any significant azimu
mode coupling occurs. Of course, if a monopole mo
does become unstable by itself, its independence from
other modes applies only to the initial stage of instabil
© 1999 The American Physical Society 044402-1
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FIG. 1. Example contour plots of the lowest three azimuthal modes.
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The nonlinear stage may be rather complex and it f
beyond the scope of this paper.

Another argument to justify an independent cons
eration of the monopole mode refers to separate t
scales in this problem. Specifically, if we assume t
the monopole mode instability develops slowly compa
to the filamentation time, then the whole beam effectiv
maintains its initial monopole structure. Quantitative
this amounts to a requirement that the incoherent
quency spread characteristic of the Haissinski equilibr
be much higher than the radiation damping rate. Suc
condition is not unusual for many electron storage ring

II. NOTATION AND BASIC EQUATIONS

For a relativistic bunch,g  Eymc2 ¿ 1, longitudinal
dynamics is conveniently described in dimensionless v
ables

x  zys0, p  2dyd0, t̃  vs0t , (1)

where z is the position of a particle with respect to th
bunch centroid (z . 0 in the head of a bunch),d is the
relative energy spreadDEyE, andvs0 is the synchrotron
frequency. The subscript “0” refers to zero-current eq
librium quantities, related byvs0s0yc  jajd0, wherea

is the momentum compaction. The Fokker-Planck eq
tion for the distribution functionrsx, p, t̃d in these vari-
ables can be written (e.g., [3]) as

≠r

≠t̃
1 hH, rjp,x 

gd

vs0

≠

≠p

√
≠r

≠p
1 pr

!
, (2)

whereh· · ·j denotes the Poisson brackets,Hsx, p, t̃d is the
self-consistent Hamiltonian

Hsx, p, t̃d ;
p2

2
1

x2

2

1 L
Z

dx0 dp0 rsx0, p0, t̃dSsx0 2 xd , (3)

andr is normalized as
R

dp dx rsx, p, t̃d  1. We have
neglected the nonlinearities of the rf potential well a
defined the parameterL as

L ;
Nr0

Cgad
2
0

, (4)
ls

-
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whereN is the number of particles in a bunch,r0 is the
classical electron radius, andC is the ring circumference
We have also defined a dimensionless function

Ssxd ; s0

Z x

0
dx0 W ss0x0d (5)

in terms of the wakefieldW szd for two particles separate
by distance z. Causality was assumed in the for
W szd  0 for z , 0.

The Fokker-Planck equation (2) has a steady s
Haissinski solution [1]

rHsx, pd  ZHe2HH sx,pd, (6)

where

HHsx, pd 
p2

2
1

x2

2

1 L
Z

dx0 dp0 rHsx0, p0dSsx0 2 xd , (7)

andZH is a normalizing factor. Explicit forms ofrH and
HH can be obtained numerically.

Canonical transformation fromx, p to action-angle
variablesJ, f can be defined to make the Hamiltoni
HH phase independent,HHsx, pd ! HHsJd.

Haissinski particle densityrH in these variables de
pends only onJ, and arbitrary distribution function
rsJ, f, t̃d  rH sJd 1 drsJ, f, t̃d can be expanded i
azimuthal harmonics

rsJ, f, t̃d  rHsJd 1
X̀

m2`

drmsJ, t̃deimf. (8)

Similarly,

HsJ, f, t̃d  HHsx, pd

1 L
Z

dx0 dp0 drsx0, p0, t̃dSsx0 2 xd

 HHsJd 1
X̀

k2`

dHksJ, t̃deikf, (9)

where

dHksJ, t̃d ; L
X
m

Z
dJ 0 Sk,msJ, J 0ddrksJ 0, t̃d , (10)
044402-2
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Sk,msJ, J 0d ;
1

2p

Z
df df0 eimf02ikf

3 SsssxsJ 0, f0d 2 xsJ, fdddd . (11)

In the J, f variables the form of the left-hand side
the Fokker-Planck equation is unchanged, appearing a
Eq. (2). The right-hand side can be obtained using
invariance of the Poisson brackets [4]. Namely, for a
F ; Fsx, pd,

≠Fsx, pd
≠p

 hx, Fjx,p  hx, Fjf,J

;
≠

≠J

√
≠x
≠f

F

!
2

≠

≠f

√
≠x
≠J

F

!
. (12)

Hence, for the zeroth Fourier harmonicr0sJ, t̃d ;
krsJ, f, t̃dl, wherek· · ·l defines phase averaging, we ha

≠r0

≠t̃
1 hH, r0jJ,f 

≠

≠J

√
≠x
≠f

F̃

!
, (13)

where F̃ ; ≠ry≠p 1 pr. On the other hand, for an
Hamiltonian H  p2y2 1 Usx, t̃d, the canonical mo-
mentum can be found asp  hx, Hjf,J. Therefore, if
we neglect nonzero azimuthal modes by assumingH 
HsJ, t̃d, r  r0sJ, t̃d, we get

≠r

≠t


≠

≠J

(*√
≠x
≠f

!2+ "
≠r

≠J
1 vsJ, tdr

#)
, (14)

where

vsJ, td ;
≠H
≠J

 vHsJd 1 L
Z

dJ 0 dr0sJ 0, td
≠S0,0

≠J
.

(15)

As discussed earlier, the monopole mode should
change much on the time scale of a synchrotron per
This is why time was renormalized above to the radiat
damping constant

t ; gdt  sgdyvs0dt̃ . (16)

For thex derivative in Eq. (14), we can write*√
≠x
≠f

!2+


I √
Ùx

vsJ, td

!2

dt .
1

vsJ, td

I
pdx

;
J

vsJ, td
.

J
vHsJd

, (17)

where integration is performed over one synchrot
period and the last equality assumes small deviation f
the Haissinski solution. Finally, introducing the diffusio
coefficient as

DsJd ;
J

vHsJd
, (18)

we can rewrite Eq. (14) as

≠r

≠t


≠

≠J

(
DsJd

"
≠r

≠J
1 vsJ, tdr

#)
. (19)
044402-3
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Note that in our derivation we allow arbitrary tim
dependence ofHsJ, td.

III. TRANSFORMATION TO A
SCHRÖDINGER-LIKE EQUATION

The Fokker-Planck equation (19) has a stand
one-dimensional form that permits transformation to
Schrödinger-like equation [5]. Let us introduce a ne
independent variable

y ; ysJd 
Z J

0
dJ 0y

q
DsJ 0d (20)

and two functions

fsy, td ;
1p

DsssJsydddd
eFs y,tdy2rsssJsyd, tddd , (21)

Fsy, td ; HsssJsyd, tddd 2 s1y2d ln DsssJsydddd , (22)

whereJsyd on the right-hand side of Eqs. (21) and (2
is given implicitly by Eq. (20). Now the Fokker-Planc
equation (19) takes the form

≠f
≠t


≠2f
≠y2 2 USsy, tdf 1

1
2

ÙFsy, tdf , (23)

where

USsy, td ; fF0sy, tdy2g2 2 F00sy, tdy2 , (24)

and the dot and the prime denote partial derivatives w
respect tot andy, respectively. This equation is strong
nonlinear since, according to Eq. (15),F is also related to
f by

Fsy, td  L
Z

dy0 S0,0sJ, J 0d

3 fe2Fs y0,tdy2fsy0, td 2 e2FH s y0dy2fH sy0dg ,
(25)

where

fHsyd ; ZHe2FH s ydy2,

FH syd ; HHsssJsydddd 1
1
2

ln

√
vHsssJsydddd

Jsyd

!
, (26)

Z
dye2FH s ydy2fH syd  1 .

Note thatfH syd is the steady state solution of Eq. (2
and it corresponds to the Haissinski solution, as can
checked by direct substitution. However, it is not obvio
how to proceed to other, time-dependent solutions
Eq. (23). On the other hand, if theÙF term is neglected,
the analysis of Eq. (23) can be made by analogy with m
familiar quantum mechanical problems. Indeed, witho
that term, Eq. (23) can be thought of as a Schrödin
044402-3
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equation for a particle in the potential wellUSsy, td.1
Whether theÙF term is negligible for a general case remai
unclear. However, since this term is zero for the Haissin
solution, one can safely neglect it for solutions that a
close tofH . This includes, for example, the importa
case of the early time behavior of a system initializ
with the Haissinski distribution att  0. In the next two
sections we will follow this approach. Namely, we w
first analyze Eq. (23) with the last term neglected, and t
account for it by perturbation theory.

IV. SCHRÖDINGER EQUATION ANALYSIS

After neglecting theÙF term, Eq. (23) reads

≠f
≠t


≠2f
≠y2 2 Usy, tdf . (27)

First, we solve a linear problem for whichvsJd  v0 is
a constant. In this case,y  2

p
v0J and the Schrödinge

potential is simply

U0
Ssyd 

y2

16
2

1
2

2
1

4y2
, (28)

which makes Eq. (27) a solvable eigenvalue problem.
is easy to check that the solution is

f0sy, td 
X̀

m0

c0
msyde2l0

mt , (29)

where

l0
m  m, m  0, 1, 2, . . . , (30)

c0
msyd  syy2d1y2e2y2y8Lmsy2y4d , (31)

and Lm denotes the Laguerre polynomial of orderm.
As expected, the linear problem does not have
unstable solutions. Any initial distribution exponential
approaches the Haissinski solutionc0

0 syd on the time
scale defined by radiation damping.

For the general case,vsJd fi const, asymptotic behav
ior of the solution of Eq. (23) is described by the solutio
to the linear problem Eqs. (28) and (31). Namely,fsyd
scales as

p
y at smally and goes to 0 asPsyde2y2y8 at

large y, wherePsyd is a polynomial. Similarly,Usyd is
quadratic at largey and has a21y4y2 singularity asy ap-
proaches 0.

Suppose that a bunch is described by the Haissin
distribution att  0. By the foregoing arguments, th
behavior of this system for smallt can be obtained from

1Of course, the similarity is quite formal. The problem
purely classical, so nōh appears anywhere. Also, there is n
imaginary constant in front of the time derivative.
044402-4
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Eq. (27). In this case,

fsy, td 
X
m

cmsyde2lmt , (32)

wherecmsyd are the eigenfunctions of the equation

≠2cm

≠y2
2 USsy, tdcm  2lmcm . (33)

Therefore, stability of the initial state depends on whet
Eq. (33) has at least one negative eigenvaluelm , 0. Let
us look at the possibility that such a negative eigenva
exists.

First, the eigenfunctions with the asymptotic behav
described above are orthogonal and they can be nor
ized by Z

cnsydcmsyd dy  dn,m . (34)

Hence, an eigenvalue of Eq. (3) is given by

ln  2
Z

dy cn

"
≠2

≠y2 2 USsy, td

#
cn . (35)

In spite of a singularity ofUSsy, td at y  0, all the
eigenvalues of Eq. (33) are bounded from below. Inde
at small distances wherecn ~

p
y, the second derivative

in Eq. (35) gives a1y4y2 term which cancels a simila
term in USsyd. In fact, it can be shown that all th
eigenvalues are higher than the average of the “effec
potential”VSsyd ; USsyd 1 1y4y2.

As an example, we consider a broadband reson
impedance model with shunt impedanceRs, resonance
frequencyvR, and quality factorQ. The functionSszd
in this case is (e.g., [6])

Ssxd 
I

LQz
sinsszxde2sxy2Q , (36)

where we defined

I ; 4pLRsyZ0 , (37)

s ; vRs0yc , (38)

z ;
q

1 2 1ys2Qd2 , (39)

and Z0 is the impedance of free space. The frequen
vH sJd and the effective potentialVSsyd for the parame-
ters Q  1 and s  3 are shown in Fig. 2 for two val-
ues of intensityI  1 and I  21. Negative intensity
corresponds to negative momentum compaction, and
importance of this case will be discussed later. For th
parameters, the effective potential indeed has a minim
whereVSsyd , 0. At first sight, we could expect a mod
trapped near the bottom of the potential well with t
eigenvalue negative at large current. This, however
not true sincec0  fH is the solution of Eq. (33) with
l0  0. BecausefH syd does not have zeros, this solutio
has the lowest eigenvalue and the rest oflm is positive.
044402-4
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FIG. 2. The incoherent frequencyvH sJd and the corresponding effective potentialVSsyd (right) shown for broadbandQ  1
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Therefore, in this approximation, the Haissinski so
tion is stable. How much this conclusion depends on
assumption that theÙF term in Eq. (23) is negligible can
be analyzed by perturbation technique.

V. PERTURBATION THEORY

Equation (23), and the condition of self-consisten
[Eq. (25)], is a strongly nonlinear system of equatio
We want to analyze it with perturbation theory, assum
small deviation from the Haissinski solution. Let
introduce perturbations as

ysy, td ; HsssJsyd, tddd 2 HH sssJsydddd ,

csy, td ; fsy, td 2 fHsy, td .
(40)

This givesF  FHsyd 1 ysy, td, and

ysy, td  L
Z

dy0 S0,0sssJsyd, Jsy0dddde2FH s y0dy2

3 fcsy0, td 2 s1y2dysy0, tdfHsy0dg . (41)

The perturbationcsy, td is normalized by the conditionZ
dy csy, tde2FHs ydy2 

ZH

2

Z
dy ysy, tde2FH syd,

(42)

and satisfies the equation

≠c

≠t


≠2c

≠y2 2 UH sydc 1
1
2

fHf Ùy 1 y00 2 F0
Hy0g .

(43)

Let us expandc and y in series over orthogona
eigenfunctionscn,

csy, td 
X̀

m0

Cnstdcn,

ysy, td 
2

ZH

X̀
m0

DnstdeFH s ydy2cn .

(44)

We assume that eigenfunctionscn satisfy the equation
044402-5
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c 00
n syd 2 UHsydcnsyd  2lncnsyd . (45)

The above expansion includes the eigenfunct
c0syd 

p
ZH e2FH s ydy2, with l0  0. Note that, by the

same argument as above, the remaining eigenvalue
positive.

The linearized Fokker-Planck equation (43) and
condition of self-consistency (41) lead to the followin
system:

ÙCn  ÙDn 2 lnsCn 1 Dnd , (46)

Dn  L
X

k

kn,ksCk 2 Dkd , (47)

where

kn,k ;
Z

dy cnsyde2FH sydy2

3
Z

dy0 cksy0de2FH s y0dy2S0,0sssJsyd, Jsy0dddd . (48)

Because of orthogonality, the normalization conditi
(42) gives just

C0std  D0std . (49)

Sincel0  0, this is automatically satisfied by Eq. (4
with the initial conditionC0s0d  D0s0d.

Looking for exponentially varying solutions
Cn ; anemt , Dn ; bnemt, we transform the system
of Eqs. (46) and (47) to the matrix equation

bn  22L
X

k

kn,k
bklk

m 1 lk
. (50)

The solution of this equation is given by the roots of t
determinant for the matrix

M ; dn,k 1 2L
kn,klk

m 1 lk
. (51)

Positive rootsm . 0 would mean instability to monopol
excitation of a bunch.
044402-5
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Since the matrixM is infinite, it is unclear how to find
its determinant in the general case. However, it is e
to see that off diagonal terms ofkn,k are small, while the
diagonal terms quickly converge to zero. This is why
expect that a good approximation for the rootsm can be
found by truncating the matrixM. If we truncate matrix
M to the lowest nontrivial rank

Ms2d 

0@ 1 2Lk1,1
l1

m1l1

0 1 1 2Lk1,1
l1

m1l1

1A , (52)

then a zero determinant occurs for

m  2l1s1 1 2Lk1,1d . (53)

Becausel1 . 0, this root is positive when

2Lk1,1 , 21 , (54)

and this may be viewed as the criterion for the onse
the monopole instability.

It is easy to see, however, that usuallyk1,1 . 0.
Indeed, let us introduce the impedanceZsnd so that

W szd 
Z dn

2p
Zsnde2inzyc. (55)

Then

kn,k  i
2s0

Z0

Z dn

2p

Zsnd
n

FnsndFp
k snd , (56)

where

Fnsnd ;
Z

dJ

√
vHsJd

J

!1y4

e2HH sJdy2cnsssysJdddd

3
Z

df eins0xsJ,fdyc. (57)

Now k1,1 depends onjF1sndj2 which is a positive and
even function ofn. Hence,k1,1 is given by the odd par
of the impedance, ImZsnd, which is negative for inductive
impedance and positive for capacitive impedance. A
result, for the most common case of inductive impeda
and positive momentum compaction,Lk1,1 . 0 and the
Haissinski solution is stable.

However, the situation is not that simple for negat
momentum compaction or in the case of capacit
impedance. Each of these conditions has been prop
by various authors to get shorter bunches and also
remedy against longitudinal instabilities. For illustratio
we continue our example of the broadband reson
model forQ  1. Using Eqs. (56) and (57), we numer
cally compute the quantity2Lk1,1 as a function ofs at
intensityI  21. The result, together with the thresho
value given by Eq. (54), is plotted in Fig. 3. It shows th
a bunch is monopole unstable at this intensity provid
its zero current length exceeds about one-twelfth of
resonator wavelength. Note that, according to Fig. 2,
intensity is not high at all since, for example, fors  3,
it leads only to about a 5% increase in the incoher
frequency spread.
044402-6
sy

e

of

a
ce

e
e
sed
s a
,
or

t
d
e
is

nt

0 0.5 1 1.5 2 2.5 3
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

σ

2Λ
κ 1,

1

Unstable

Stable

FIG. 3. Illustration for the monopole instability criterio
[Eq. (54)] for broadbandsQ  1d resonator impedance fo
negative momentum compaction and intensityI  21. Nu-
merical calculation was done using Eqs. (56) and (57), wh
vsJd was assumed constant andc1 was taken from the solution
to the linear problem (31).

VI. DISCUSSION

We have investigated single bunch stability with resp
to longitudinal monopole oscillations. These oscillatio
may become unstable as a result of an imbalance betw
radiation excitation and damping. Since this phenom
non falls beyond the coverage of the linearized Vlas
approach, we chose to employ a different technique
has not been used for instability analysis. This techni
involves the transformation of the phase-averaged Fok
Planck equation to a Schrödinger equation with an a
tional term arising from the self-consistent potential. T
Schrödinger equation is analyzed similar to quantum
chanics and the effects of the additional term are found
perturbation analysis.

Utilizing this technique we have obtained a simple c
terion, Eq. (54), for the onset of monopole instability. A
cording to this criterion, monopole mode instability do
not appear in the most common case of storage ring
eration with positive momentum compaction when
impedance is largely inductive. However, for the ca
of negative momentum compaction,a , 0, as we have
illustrated in Fig. 3, bunches may become monopole
stable at modest intensity. We expect a similar beha
for the somewhat rare case of predominantly capaci
impedance anda . 0.

As discussed in the Introduction, the essential assu
tion we make in our analysis is that the monopole mo
can be considered separately from the rest of the
muthal modes. This assumes the absence of azimu
mode coupling which implies some limitations on t
growth rate of the instability. It also assumes that
other azimuthal modes are stable by themselves.
interesting that, since the monopole instability criteri
Eq. (54) effectively includes only the imaginary part
044402-6
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impedance, the second assumption is rather relaxed.
deed, as follows from the linearized Vlasov analysis,
azimuthal modes, other than monopole, become un
ble due to the asymmetry in the Haissinski potential t
comes from the real part of impedance. (We omit a som
what exotic possibility of multiple minima in the Haissin
ski potential.) Therefore, monopole mode instability c
exist when the remaining azimuthal modes are stable.

It is conceivable that the monopole instability could
one of the factors that prevents high current operat
of storage rings with negative momentum compacti
Many attempts of such operation have been tried
shorten a bunch and to avoid various instabilities (e
[7,8]), often the so-called microwave instability (e.g., [6
Unfortunately, since usually only the static bunch sha
and/or the energy spread measurements are repo
it is hard to infer what particular instability was th
limitation. However, in some cases, it appears t
there is something other than the microwave instabil
because the threshold increase predicted for this instab
(e.g., [9]) is not observed. It would be nice to find
concrete evidence of monopole instability in either futu
experiments or in the log books from past experimen
Such evidence might include, for example, growth
the longitudinal beam size, in the absence of synchrot
sidebands to the revolution harmonics of a beam posi
monitor signal.

Finally, we hope that the technique described in this
per can be applied to other problems in accelerator phy
that lead to the one-dimensional Fokker-Planck equat
This includes, for example, microwave instability, bea
beam interaction in collider rings, and even halo form
tion in rings and linacs. It would be especially interesti
if, for any of these problems, along with a steady st
044402-7
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solution with l  0, there exists an exponentially grow
ing solution of the Schrödinger equation that has a ne
tive eigenvaluel , 0. This could qualitatively explain
the relaxation oscillation behavior seen in many nume
cal and real life experiments.
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